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“My point is that with each new case it is an empirical question whether these models, or models 

from some other theory, or no models from any theory at all will fit.” 

 

 -----Nancy Cartwright 

 

“You should understand that if you’ve looked through one window, 

You’ve looked through the general idea of a window, 

Although this claim is entirely conditional and doesn’t apply to stained glass or lancets, 

So you have to repeat the procedure repeatedly.” 

 

 -----Jaswinder Bolina 

 

1.  Introduction 

 

In this paper I criticize a meta-theoretic view of functional localization in neuroscience, which I 

call “absolutism.”  Absolutism is the idea that the right kind of function ascription to make to 

parts or areas of the brain is to posit a single, univocal function for each area.   

 

Absolutism: For any area of interest A, there is some univocal description, D, such that D 

describes the function of A in any particular context. 

 

Absolutism is inspired by some powerful, but (I will argue) ultimately mistaken intuitions about 

what constitutes good explanation in the case of functional localization.  The main intuition is 

that explanations should be highly general and predictive, and that such goals are undermined if 

the explanandum is genuinely context-sensitive.  Hence, as per the definition above, we should 

want a single function attribution that describes what a given A does whenever it functions.  In 

particular, I assess a form of absolutism that has gained considerable momentum in recent years, 

which I call “computational absolutism” (CA).  Traditional ways of establishing neural function 

argued that the function of a brain area is to process a particular type of information, and/or 

contribute to a particular type of task.  Recent physiological results, however, suggest that 

individual brain areas contribute to a number of distinct tasks, and process distinct types of 

information, depending on the perceptual or behavioral context.  Computational absolutists 

consider this a bad result for functional localization, since it undermines generality and 

predictive power, and they hope to avoid this outcome by positing a different type of function 

ascription.  They claim that, even if the information processed by brain areas differs with 

context, the brain area performs the same type of operation—namely, a particular type of 

computation—in each case.   If CA is successful, then contextual variation is not part of the 

function of a brain area, but explained away as the output of the same, type-identical function 

being employed in different settings.   



 

It is certainly not a priori that localization must be construed in absolutist terms.  Recently, some 

theorists have begun to consider the possibility that contextual variation and localization are not 

incompatible, adopting “contextualist” views of function (Klein, 2012; McIntosh, 2004).  

Elsewhere (Burnston, 2015, 2016), I argue that contextualist accounts, appropriately construed, 

are not subject to the negative epistemic consequences that absolutists assume.  Here I claim only 

that CA does not succeed at its goal of avoiding contextual variation in functional analysis.  CA-

theorists seek explanations of what an area does intrinsically—viz., regardless of contextually-

varying external influence—that are themselves highly general and predictive.  I argue that these 

goals are incompatible; any account general enough to abstract away from context is not likely to 

either successfully decompose the brain or to succeed at being highly predictive.  I will make the 

point via a case study of computational modeling projects describing the function of perceptual 

area MT. 

 

My strategy will be as follows.  I will first argue against CA on its own terms.  The current state 

of the field consists in a diverse set of models, involving different computational descriptions 

that account for distinct phenomena.  So, there is no currently available univocal description of 

MT’s computational function.  Moreover, the field is not reasonably thought of as trending in the 

direction of a single, highly general description that covers all cases.  The reasons I will give are 

familiar from the scientific modeling literature, particularly the perspectives advanced by 

Cartwright (1983, 1999) and Morrison (2000).  Highly general models, of the sort that might 

reasonably be expected to apply in a wide variety of cases, do not in and of themselves explain 

or predict anything—instead they must be conjoined with specific causal claims about the 

situations being modeled.  Since these causal factors are likely to vary with context, context 

cannot be eliminated from function ascription.  I thus end by outlining a perspective on modeling 

projects in neuroscience inspired by the work of Cartwright and Morrison.  While this will at 

best be a sketch, I claim that the view has the resources to adequately describe the field of 

computational neuroscience and the relative roles that contextual function attributions and 

general mathematical models play in giving functional explanations.    

 

In section (2), I further describe absolutism and its motivations.  In section (3), I discuss recent 

physiological results from area MT which suggest that its function varies with perceptual and 

task context.  In section (4) I argue that the current state of the field in computational modeling 

of MT’s function does not support a CA account, and in (5) that the field is not trending in the 

direction of a CA account.  In section (6) I give a version of a Cartwright/Morrison account for 

computational modeling of neural function.   

 

2.  Traditional and Computational Absolutism 

 

A function, for current purposes, is what a part of a system contributes to the overall behavior of 

the system of which it is a part (Cummins, 1975).  Absolutism attempts to define each area’s 

function according to one type of contribution, which is made in all contexts.  Neuroscience has 

traditionally pursued absolutism of a particular form—namely, representational or task 

uniformity.  On such accounts, which I call “traditional absolutism” (TA), neural areas are 

individuated in virtue of representing a specific kind of information, and/or performing, 

univocally, a particular kind of task: different brain areas process motion (area MT) and color 



information (V4), or are in charge of spatial memory (the hippocampus) or language 

comprehension (Wernicke’s area).  There is a close relationship between representing a specific 

kind of information and performing a particular task.  As we will see, area MT is considered to 

contribute to tasks involving motion perception in virtue of representing motion.  The language 

comprehension system, similarly, must work over representations of lexical constituents in order 

to contribute to lexical tasks.  So, TA attempts to attribute univocal function ascriptions, and to 

do so by isolating a single representational or task description that can be assigned to the area in 

question. 

 

Evidence against TA can come in the form of (i) showing that a given area processes multiple 

kinds of information, and/or contributes to multiple different tasks, or (ii) showing that the area 

is not in fact necessary for the task it is posited to perform.  I will focus on type (i).  Proponents 

of CA generally agree that this kind of evidence speaks against TA, but resist the conclusion that 

absolutism writ large is false.  For instance, Anderson (2010) cites evidence from fMRI meta-

analyses that the average cortical area is involved in nine distinct tasks.  He then resorts to a CA-

type description: he proposes a distinction between working and use, on which there is some 

computational process—an area’s working—that it performs across any instance of its 

functioning or use, which may vary with context.  So, while a given area may be involved in 

multiple tasks, it does the same thing in each.  A working is “whatever single, relatively simple 

thing a local neural circuit does for or offers to all of the functional complexes of which the 

circuit is a part” (Anderson, 2010, p. 295).   

 

Other CA theorists posit similar distinctions.  Bergeron (2007) distinguishes working and role, 

where a working is a “sensory or motor operation” that is “basic” (p. 185).  Rathkopf (2013) 

gives a more formal gloss.  He argues that what is specific to a particular area is a type of signal 

transform, where this is to be read as a mathematical operation unique to the area.  So, no matter 

what signal comes into an area (i.e., what information it is processing at a given time), the area 

applies the same, unique operation to that signal, and its output is the result of that operation.  

These accounts are still absolutist—they posit a univocal description that is supposed to describe 

what an area does in all contexts.  It is just that the type of description has changed, from one 

couched in terms of information processing or task contribution to one describing a type of 

computation. 

 

There are two specific motivations for positing CA, both inspired by absolutism writ large.  The 

first is the desire to explain what a particular anatomical structure does.  Rathkopf calls these 

“structurally oriented explanations”—explanations on which “the structural properties of the 

device … make sense” (p. 6).  Price and Friston (2005) and Anderson (2010) make related 

claims, arguing that each part of the brain has a distinct anatomical structure, comprised of its 

pattern of internal and external connections, and thus should admit of a distinct function 

ascription.  The goal, on CA, is to figure out what computation the fixed structure performs. 

 

The second motivation is based on the ideal of absolutist explanations as highly projectable, 

predictive functional accounts of brain areas.  This is supposedly impossible if contextualist 

variation, for instance in task contribution, is admitted into functional accounts.  As Rathkopf 

complains, given contextual variability in the tasks to which an area contributes: “there could be 

no grounds for claiming of any list of task-bound functions that it is complete. … Any functional 



contribution to behaviors yet to be taken into account would demonstrate the incompleteness of 

the list” (2013, p. 10).  The goal of functional localization, in standard absolutist terms, is to 

avoid these possible extensions and variations—to give as close to a “complete” theory of the 

brain area being described as possible.  Price and Friston sum up the position well, sayingthat “it 

is most useful to label a region with a function that explains all patterns of activation” (2005, p. 

268).  If a successful CA account is posited, we will know, given that description, how the area 

will function in any particular context we investigate.1 

 

I will argue that CA does not adequately describe the epistemology of computational 

neuroscience in one specific case:  function attribution to perceptual area MT.  Since perceptual 

areas are primary textbook success cases for functional localization, failure to account for 

localization in MT amounts to a major problem for CA.  I will first, in section 3, discuss results 

in investigation of MT’s function that undermine TA—that is, evidence that its function varies 

contextually.  CA theorists, if they are right about localization, should be able to point to 

computational analysis of MT as providing a univocal function description despite this apparent 

variation.   In the remainder of the paper I argue that this is not the case. 

 

3.  MT and TA 

 

3.1. The Traditional TA Account of MT 

 

One of the most successful TA-style accounts in neuroscience is the “modular functional 

hierarchy” view of the visual system (Burnston, 2015, 2016).  The framework explains the 

functioning of the visual system via decomposition into specified areas, each of which functions 

to represent a specific kind of information.  As Zeki (1978) describes it, each area “functionally 

specialized to analyze different features of the visual environment” (p. 423) such that “at every 

area a different type of information is analyzed” (p. 428).  Early levels of the hierarchy represent 

simple features, such as luminance discontinuities (edges), displacement (a precursor to motion), 

and wavelength.  Higher levels, such as those of “mid-level” vision, take these representations as 

input, and use them to extract more general features, such as motion, color, and form.  Each of 

these features is represented in a specific area—motion in MT, color and form in distinct parts of 

V4.2  Finally, different high-level visual areas have responses that represent particular shapes 

regardless of perspective, use motion to guide eye movements, and recognize objects.   

 

                                                            
1 CA theorists differ in whether they describe their chosen operations quantitatively or qualitatively.  I will focus on 

quantitative descriptions here, since in computational neuroscience most functional descriptions are given in 

quantitative terms (but see section 5).  It should also be noted that these views have developed for each individual 

theorist over time—Friston (2010) gives a more quantitative reading than Price and Friston (2005) do, for instance.  

Anderson (2014), in more recent work, seems to soften his CA stance somewhat.  I am attempting to focus on the 

idea of CA itself, so will not catalog these nuances here. 
2 While I have mostly discussed absolutism as a description of the function of areas, it can also apply to functional 

divisions within an area.  In the visual system distinct parts of V1 are classically posited to process displacement, 

orientation, and wavelength information, and this continues in areas V2 and V3 (Livingstone & Hubel, 1988).  It is 

compatible with TA to subdivide areas and give absolutist function ascriptions to each, but this consideration is not 

pertinent in the arguments I will make regarding MT.  See note 4 below, and for more thorough discussion 

(Burnston, 2015). 



MT’s function is defined, according to the hierarchical view, by its specific role in motion 

perception.    Individual MT cells have preferred directions of motion and preferred speeds, 

meaning that the cell will be most active when a stimulus moving at a particular direction and 

speed occurs within the cell’s receptive field (the area of the visual field in which a stimulus can 

activate the cell).  While there are cells sensitive to displacement in V1, at MT response 

properties to motion emerge that are distinct from elsewhere in the visual system.  Particularly 

important is the ability to detect “pattern motion” in the stimulus.  The cells in V1 that respond to 

displacement respond in a way that is ambiguous regarding the direction of motion, due to their 

small spatial receptive fields (the so-called “aperture problem”; see Bradley & Goyal, 2008, for a 

review).  That is, the displacement they detect could be caused by an object moving in a number 

of different directions.   Moreover, different parts of the same object, which moves in a single 

overall trajectory, may move in different directions.  Pattern motion involves the ability to 

extract the overall direction of the object from the “component” motions of its parts.  MT has 

different groups of cells that respond to component and pattern motion, which allow it to detect 

motion even in stimuli without clear object boundaries, including overlapping stimuli, 

transparent stimuli, and fields of moving dots.  Importantly, MT responses are also correlated 

with perceptual judgments about pattern motion (Britten, Newsome, Shadlen, Celebrini, & 

Movshon, 1996) —MT signals are thus taken to play a functional role in perceiving motion, 

particularly by projecting to the lateral interparietal area (LIP; Shadlen, Britten, Newsome, & 

Movshon, 1996), an area whose responses underlie perceptual decisions. 

 

A final difference between MT and earlier parts of the visual hierarchy is that MT cells also 

exhibit motion “opponency,” meaning that motions in directions other than their preferred 

direction (most strongly, the opposite direction) reduce, and sometimes cancel, their responses.  

MT’s combined properties also differ from areas later on in the hierarchy, which have specific 

responses to non-linear types of motion (e.g., rotations and expansions in area MST; Van Essen 

& Gallant, 1994).  Due to its specific place in the visual hierarchy, and its particular response 

properties, the standard view of MT is that it is “a motion area” (Zeki, 1978, p. 426)—that is, it 

has representing motion as its univocal function.   

 

Altogether, MT is an incredible success story for functional explanation in neuroscience, and it is 

a textbook case of TA-style description.  However, physiological analysis in the last 15 years has 

slowly uncovered much more diversity in MT responses than the traditional hierarchy view 

predicts; investigators  have slowly come to accept that MT responses represent more than 

motion information, and are involved in more than motion-judgment tasks.  I discuss one 

example of these results in the next section.   

 

3.2. Evidence against a TA-Account of MT 

 

Binocular disparity—basically, the angle formed by an object and the points on the two retinae 

where light reflecting from the object hits the eyes—is an important cue for depth perception.  

Objects at two different depths will exhibit two different disparities relative to a “plane of 

fixation,” the depth at which the two eyes are focused.  A wide range of results have suggested 

that, not only are MT responses influenced by disparity information, but that that information is 

relevant for depth perception.  DeAngelis and Newsome (1999) found that a majority of 

individual MT cells have responses to particular preferred disparities—when a motion stimulus 



moved in the cell’s preferred direction, its responses were greatest at a particular disparity, and 

far lesser for other disparities.  Disparity-selective cells were organized in a regular way across 

MT, suggesting that MT conveys meaningful information about disparity.3  Moreover, many 

cells responded to disparity even in stationary stimuli.  DeAngelis, Cumming, and Newsome 

(1998) showed that these responses were predictive of depth judgments, even for stationary 

stimuli, thus suggesting that MT could represent depth even  in the absence of motion. 

 

Subsequent studies showed that the vast majority of MT cells (93%) have disparity selectivity 

(Uka & DeAngelis, 2003)4, and that over a third of these respond to disparity even in the absence 

of motion (Palanca & DeAngelis, 2003).  A number of other results also further established the 

relevance of MT disparity signals for depth judgments (Dodd et al., 2001; Grunewald et al., 

2002).  In all, the consensus that has developed is that MT is as much a depth area as a motion 

area.5  

 

The results regarding MT and depth parallel the kinds of concerns that motivate CA theorists, as 

well as contextualists, to deny TA.  Depending on the perceptual and behavioral context, MT 

responses seem to represent multiple different types of information, and contribute to distinct 

tasks (for a full argument in favor of this interpretation, see Burnston, 2015, 2016).  If CA is the 

right account of functional localization, then computational analysis of MT should be involved in 

positing computations that both explain the distinctive structure of MT and explain how MT will 

respond in any given context—including depth contexts.  In the remainder of the paper, I argue 

that this view is not substantiated by projects attempting to describe MT’s function in 

computational terms.   

 

4.  Models of MT Function 

 

In perceptual neuroscience, computational models posit a type of computation that a brain area 

performs.  The model is “successful” for a range of stimuli if, for those stimuli, the behavior of 

modeled cells is similar to the response of real cells in similar situations.  For instance, if the 

model predicts a certain level of increase in activation for certain stimuli, this should be reflected 

in the firing rates of actual cells in those conditions.  Often, in MT, computational models 

attempt to capture the kinds of motion-selectivity properties discussed above—e.g., direction 

selectivity, pattern motion, and opponency.  The process of constructing a model involves 

positing a type of computation, constructing a model of a brain area involving particular 

anatomical features (such as the inputs to the modeled area, its outputs, and/or its internal 

connections), designing the stimuli, and fitting the parameters of the model (such as the level of 

excitation for a certain stimulus property) to physiological data.  Successful models explain the 

data by showing how the computation, performed over the input, produces the right kind of 

                                                            
3 Influences of disparity information on MT responses had in fact been noticed long before, but a variety of reasons 

were evinced for considering this influence to not be functionally related to depth perception (Maunsell & Van 

Essen, 1983).  As a result, the disparity sensitivity of MT was relegated to footnotes and asides.  I discuss this 

development in more detail in (Burnston, 2015).   
4 This speaks against the suggestion that feature-specificity, and thus absolutism, might be saved by subdividing MT 

into motion- and depth-selective parts, as had been done for color and form responses in V4; see note 1. 
5 Investigation of MT and depth has proceeded considerably beyond these early results, further distinguishing 

between different types of disparity responses and showing that MT responses are relevant to multiple kinds of 

depth perception.  I discuss these results in detail elsewhere (Burnston, 2015, 2016).   



responses.  Thus, the posited computation is a candidate to be the working or signal transform 

proposed as a functional description by CA theorists.   

 

4.1.  Modeling Motion Processing 

 

The models of MT function that I will focus on start from a description of the signal that MT 

receives from lower areas of the visual hierarchy, particularly V1.  In Adelson and Bergen’s 

(1985) classic “motion energy” model, the idea is that displacement-sensitive cells in the early 

visual system provide an initial description of the spatiotemporal frequency of the stimulus.  

Spatiotemporal frequency can be determined by Fourier decomposition, which breaks down the 

overall stimulus into a power spectrum of frequencies in space and time.  In the frequency 

domain, a direction-selective filter responds to particular frequencies in the spatio-temporal 

decomposition—they thus represent a particular “component,” of the decomposed “motion-

energy” in the stimulus, which can be thought of as a combination of spatial frequency, direction, 

and speed (Bradley & Goyal, 2008).  However, simple component filters will not match the 

response properties of MT—they will not, for instance, exhibit pattern motion responses or 

opponency.  As such, the consensus surrounding Adelson and Bergen’s model is that it is a good 

description of “early” vision processes, such as those present at V1 (Nowlan & Sejnowski, 

1995), and many MT models use motion-energy filters as inputs to modeled MT cells.  Modeled 

MT responses are then intended to capture the particular features of motion perception—

including pattern motion responses for a variety of stimuli, as well as opponency—attributed to 

MT, as compared to V1.  The hope is that MT’s function can be characterized in terms of 

“simple operations in the spatiotemporal frequency domain” (Bradley & Goyal, 2008, p. 686).   

 

4.2.  Summation and Normalization Models 

  

Simoncelli and Heeger’s (1998) “summation and normalization” model began with V1 inputs to 

MT consisting of motion-energy filters of the type described by Adelson and Bergen.  Each 

modeled MT cell received input from specific modeled V1 cells—excitatory input from 

“preferred-direction” cells and inhibitory from other cells.  MT cell responses were determined 

by subsequent summation and normalization of these signals.  That is, the summation and 

normalization steps were taken to be the computation performed by MT over the signal coming 

from V1.  At the MT stage of processing, the signals leaving the modeled V1 cells were added 

together—the summation step.  In the normalization step, each individual V1 output was divided 

by the sum total.  The result of the computation was to provide the same modification to each V1 

output, which was determined by the population of those cells, hence the “normalization.”  MT 

cell responses were due to the normalized values of the V1 cells that provided them with input.  

The summation and normalization procedure, then, purported to model the computation 

performed by MT—it modeled the transformation that occurs in a motion signal between the V1 

and MT stage of the motion stream, which in turn produces the responses of particular MT cells.  

The “decision” made by MT was taken to be the peak activation of the population of MT cells—

i.e., the most active cells were the ones whose direction and speed preferences determined the 

outcome.   

 

The model predicted a variety of response properties characteristic of MT.  The aperture problem 

was overcome by having MT cells receive input from particular combinations of V1 cells.  While 



one V1 cell is ambiguous for direction of motion, having a cell take input from multiple V1 cells 

can disambiguate the direction (called the “intersection of constraints” solution; Bradley & 

Goyal, 2008).  The modeled MT cells could therefore represent pattern motion, which they did 

successfully for a range of drifting grating and dot stimuli.  Finally, the cells showed opponency 

both due to normalization from the subtractive stage and from inhibition from V1 cells selective 

for other directions.  These combined properties allowed the model to account for a variety of 

opponency effects, including the fact that motion opponency occurs most significantly for 

motion in the opposite direction to cells preferred directions, at approximately the cell’s 

preferred speed (Snowden, Treue, Erickson, & Andersen, 1991). 

 

4.2 Bayesian Models 

 

Koechlin, Anton, and Bernard (1999) also modeled MT cells as operating over V1 inputs tuned 

for spatio-temporal frequency, but there were two key differences between their model and 

Simoncelli and Heeger’s.  First, they used a different computational principle, Bayesian 

inference.  Second, they explicitly modeled lateral connections between MT cells: each cell 

received excitatory input from cells with similar direction preferences whose receptive fields 

were in adjacent parts of the visual field; each cell also received inhibitory input from cells 

covering the same part of the visual field but with distinct direction preferences.  What made the 

model Bayesian was that it employed an activation equation for each cell that involved a “prior” 

probability for each particular velocity and direction (and for those in adjacent parts of the visual 

field, which set the excitatory connections).  This was set by the training-history used to fit the 

model—the more a cell “saw” motion in a particular direction and velocity, the higher the prior 

probability it applied to that type of stimulus.  The responses of cells to a test stimulus were 

determined by an application of Bayes’ rule, which gave a posterior probability for a particular 

direction and velocity given the prior and the actual stimulus.  Put simply: the cells fired most 

whose priors most closely matched the occurring stimulus.  This allowed for the Bayesian model 

to capture direction and speed selectivity.   

 

The lateral connections allowed for solving the aperture problem and inhibiting opponency.  

Excitatory connections from adjacent parts of the visual field could disambiguate which direction 

cells should be signaling.  Similarly, motion in the opposite direction from a particular cell’s 

preferred direction would inhibit it due to subtractive influence from the cells currently encoding 

the stimulus.  These properties, while implemented differently, accounted for a similar set of 

responses as the Simoncelli and Heeger model.  There was one major difference, however.  Due 

to the lateral excitation, the motion signals “propagated” along the moving stimulus—e.g., with 

units in the middle of a moving plane or along the edge of a moving bar becoming more active—

and did so with particular temporal patterns that matched psychophysical responses for 

estimating the velocity of bars of varying lengths.  This result was taken to be important for 

understanding the perception of elongated moving objects, and was unique to the Koechlin et al. 

study. 

 

4.3.  Competition Models 

 

Krekelberg and Albright (2005) set out to physiologically measure and model responses of MT 

cells to apparent motion stimuli, including “phi”-motion and “reverse-phi” motion.   Apparent 



motion phenomena are motion percepts in which discrete spatio-temporal displacements of a 

stimulus are perceived as continuous motion.  Phi- and reverse-phi stimuli are diagrammed 

below. 

 

 
 

Figure 1.  The phi- and reverse-phi stimuli from Krekelberg and Albright (2005). 

 

Each panel shows a moving grating over several time steps.  In the left panel, the grating moves 

to the right, and this stimulus produces a phi-motion perception to the right.  In the reverse-phi 

stimulus in the right panel, the displacement is the same, but the grating switches luminance 

contrast (i.e., going from white to black, or vice versa) at each time step.  In this stimulus, 

perceived motion is generally to the left.  To see this, focus on the far right bar in the first time 

step of the figure on the right.  In the second time step, subjects perceive the stimulus as though 

this bar had moved to the left, and was now the black bar second from the right.  This perception 

matches a shift in the direction of the predominant Fourier energy in the stimulus, although there 

are still some components exhibiting rightward motion.  Interestingly, monkey MT cells also 

switch their direction preferences in the reverse-phi stimulus.  This means that standard 

“subtraction" models of opponency are inadequate:  if cells really responded only to motion 

energy in one direction, and opponency occurred to motion energy in the opposite direction 

simpliciter, then MT cells should not exhibit strong responses to the reverse-phi stimulus.  Both 

Simoncelli and Heeger’s and Koechlin et al.’s models involves subtractive opponency, and 

therefore can’t account for this result. 

 

As an alternative, Krekelberg and Albright propose a “competition model,” which includes an 

excitatory and an inhibitory weight for each Fourier component in the studied stimuli.  Each cell 

was characterized by particular weights to each particular component.  The combined positive 

and negative weights could account for the reverse-phi results, since the weights to multiple 

components could be combined in a variety of ratios.  Consider the following graph, in which P 

and p are components with spatio-temporal energy moving in the cell’s preferred direction; A 

and a in the opposite direction, and f and s in other directions.  If component A is paired with P, a 

significant inhibition will result, since the overall effect of inhibition is much greater.  However, 

if a is combined with P, little change will occur.  So, if in a reverse-phi stimulus the component 

that switches directions approximates the spatio-temporal frequency of a, the physiological 

response to the stimulus will remain strong. 

 



 
 

Figure 2.  Competition model results for a single MT cell.  From Krekelberg and Albright, 2005. 

 

5.  The Status of CA 

 

CA is motivated both by the intuition that a successful model will explain the particular 

anatomical structure found in a particular part of the brain, and by the ideal of general predictive 

power.  In this section I argue that neither of these claims is substantiated by the state of the 

field.   

 

With regards to the anatomical motivation, the first thing to note is simply that no model 

discussed attempts to describe all of the explanatorily relevant features of MT’s anatomy 

(defined, you’ll recall, by the combination of its internal wiring patterns and its connections to 

other areas).  Further, I can find no arguments in the literature suggesting that the models are 

explaining the distinctive anatomical structure of MT, as compared to other brain areas.  While 

some structure is always modeled, the structure that is posited is what is required to understand 

why particular physiological behaviors come about, and not an attempt to explain the entire or 

the distinctive structure of the area.  Thus, even if we grant the assumption that each brain area 

has a unique structure, it is highly questionable that computational models are in the business, 

primarily, of explaining that structure. 

 

To flesh out this claim in more detail, let’s return to the specifics.  Simoncelli and Heeger’s 

model explicitly builds in only relatively few anatomical facts, focusing mainly on input from 

V1 cells.  It does not model the distinction between component and pattern motion cells in MT, 

nor does it model an output stage.  This is in contradistinction to other models, which build in 

these architectural facts.  Nowlan and Sejnowski’s (1995) model, for instance, while also a 

summation/normalization model, does include these aspects, and in virtue of doing so can 

account for some motion phenomena that Simoncelli and Heeger’s cannot (namely, stimuli for 

which both component and pattern cell responses are important).  Koechlin et al.’s (1999) model 

builds in further architecture still, for instance explicitly modeling excitatory and inhibitory 

connections between MT cells, and use these properties to account for other phenomena.  The 

Krekelberg and Albright model measures no MT architecture explicitly at all.  It simply assumes 

that the different Fourier components in the stimulus are delivered as input to MT cells somehow.   



 

The argument, then, is that modeling projects are tied to particular expananda, and it is not vital 

to their explanatory success to model some particular amount or specificity of structure.  This is 

most clear in Krekelberg and Albright’s model and its discoveries about inhibition in MT.  The 

fact that each MT cell has both positive and negative weights for each Fourier component is a 

major revision to the traditional thinking about inhibition in motion-energy models.  And the 

discovery was based on very minimal assumptions about architecture.  But if this is the case, 

then the explanatory value of Krekelberg and Albright’s model is not based on its modeling any 

specific structural aspects, but is instead a principle of MT function that holds independently of 

how the detailed structural/anatomical story comes out.   

 

There is a similar diversity in terms of the actual phenomena being modeled.  While there is 

significant overlap in terms of the MT responses that each model can account for, there are also 

differences.  The Bayesian model, in virtue of its combined computational and anatomical 

assumptions, can explain pattern-spreading phenomena that the other models miss.  Simoncelli 

and Heeger’s model accounts for some opponency phenomena, not all.  Krekelberg and 

Albright’s model captures facts about opponency missed by other models, and can explain 

reverse-phi phenomena, but is geared specifically to opponency phenomena and not to all MT 

responses (see below).  But this variation of successful model type with explanandum is a large 

problem for the CA theorist, since CA posits that a brain area performs one type of computation 

in all contexts, not different ones in different contexts.  If the distinct models are taken as 

literally true descriptions of a brain area’s function, then it seems that the computational function 

of the area does in fact change with context.  But the CA theorist can also not retreat to a more 

pragmatic account of the role of these models.  As Cartwright (1983) has argued, the presence of 

a variety of distinct theoretical descriptions, whose explanatory value depends on the situation 

being modeled, militates against taking one particular description as the correct one for the 

system being studied.  Again, however, CA theorists are committed to giving precisely this sort 

of description.  The current state of the field thus does not support the absolutist aims of CA.  

 

For the remainder of this section, I will take the current variation in types of computations 

posited by successful MT models as read, and focus on possible responses that a CA theorist 

could offer.  These responses rely, respectively, on modifying the level of description at which 

explanations are couched, or on stressing the need for conceptual unification in modeling.   

 

5.1.  Level of Description 

 

The first response on behalf of CA is to suggest that positing mathematical functions is not the 

right level of description.  Instead, we should focus on the level of syntax, the particular program 

implemented by a brain area.  A given mathematical function, of course, can be implemented by 

a variety of syntactic programs, and it might be at this level of description that we can isolate a 

unique function for a specific area.  Piccinini (2008), for instance, suggests that we should not 

individuate computations in terms of semantic notions, but instead purely in terms of their 

computational function—how they contribute to the overall syntactic processing of the computer 

in which they operate.   

 



There are a variety of reasons to be skeptical about this move, at least in terms of neuroscientific 

explanation (Piccinini is primarily interested in how to define computation, which is not my 

concern here).  As Shagrir (2001) notes, a physical/anatomical structure of any significant 

complexity is likely to be able to execute a large number of distinct syntactic programs at once—

the more complex the structure, the more possible programs implemented.  As the foregoing 

discussion contests, MT is pretty complex.  Both its structure and its computational functioning 

can be and are described in different ways depending on the phenomenon being studied.  

Shagrir’s own proposal is that when positing syntactic structures we index them according to the 

particular tasks they perform.  In the current setting, we can read this as the view that we can 

only understand the syntactic programming of a particular part of the brain in terms of how we 

semantically describe the function it computes.  But if this is the case, then our view of the 

syntax will change with context, exactly what a CA theorist cannot accept.   

 

The situation is in fact no better, however, if we follow Piccinini’s non-semantic proposal for 

how to individuate syntax.  He suggests that we look at the other processes contributed to by a 

processor, and individuate the program that it runs according to those contributions.  He calls this 

“wide functional individuation,” and in the brain case it can be thought to correspond to the 

relationship between a syntactic program at one area and the programs at other areas to which it 

provides input.  Alas, this is no good for the CA theorist either.  Recall the quote from Anderson 

in section 1: the CA theorist wants to posit one computational working that makes the same 

contribution to all the “functional complexes” it serves.  If we must re-describe the syntax when 

we talk about distinct contributions to further computational processes (viz., other parts of the 

brain), then CA’s promise of a univocal description is undermined.  Piccinini sums this point up 

well himself: “we cannot determine which computation is explanatory within a context without 

looking outside the mechanism” (2008, p. 231).  To the extent, then, that we individuate 

programs in contexts, evidence of contextual variation in function can be construed as evidence 

for contextual variation in computation, even at the syntactic level. 

 

Now, as Piccinini notes, there is at least a conceptual possibility that one and the same program 

could be given different mathematical/semantic interpretations in different contexts, so a CA-

theorist might hope for this kind of theory of brain areas.  This is really a slim reed to grasp at, 

however.  As Piccinini points out, it may be “difficult or impossible” (2008, p. 216) in complex 

computers, to specify the syntax without first alluding to a semantic characterization of the 

operation being performed.  One might just hope that, given a complete wiring diagram of (e.g.) 

MT, and a complete list of its physiological responses, we could describe its entire machine 

table.  However, this would be unhelpful for a variety of reasons.  First, part of the appeal of CA 

theories is that they have a “conceptual compactness” (Rathkopf, 2013, p. 10), one that is 

supposed to be lost by importing context.  Simply listing the whole gamut of syntactic operations 

performed by a brain area, however, seems to offer little in the way of this compactness, 

compared with a description of a type of mathematical function.  And lastly, the above 

discussion showed that computational explanation in neuroscience, as currently constructed 

anyway, is not primarily in the business of giving complete anatomical-computational accounts 

of each brain area.  So, the levels-of-description response seems to offer little help to the CA 

theorist. 

 

5.2.  Unification 



 

The most promising response for the CA theorist is to claim that, while no model currently 

accounts for all results, further model development may produce one that does.  In particular, CA 

theorists might rest their hopes on theoretical unification: some model may prove to be the best 

at incorporating the results of other models, importing more architectural facts, and generalizing 

to the widest range of phenomena.  For instance, while the summation/normalization model 

given by Simoncelli and Heeger doesn’t account for all phenomena regarding MT function, it 

might be expanded to include competition between Fourier components (as in the Krekelberg 

and Albright model), to model the distinction between component and pattern cells (as in the 

Nowlan and Sejnowski model), and to include lateral connections between cells (as in the 

Koechlin et al. model).  These kinds of development might allow the model to account for 

instances of MT functioning currently outside of its purview.  Computational neuroscientists do 

sometimes express unificationist leanings—they often tout the generality and flexibility of their 

models, and express the hope that with development more architectural facts and phenomena can 

fall under their particular model’s umbrella.   The CA theorist might expand this sentiment to 

suggest that one computational description will prove to be the best at this kind of unification.  

As such, let’s refer to it as the “unificationist gambit.”  The gambit is suggested by some 

statements made by CA theorists, particularly in Price and Friston’s (2005) expressed desire for a 

single description that “encompasses” anything that an area might do in distinct contexts, as well 

as Friston’s (2010) subsequent claim that specific functional accounts should fall under “global” 

theories.   

 

Two points before moving on to assess this idea.  First, the gambit can’t just be wishful thinking.  

We need to discuss whether this kind of unification is something we can expect given the nature 

and status of the field.  Second, there is a limit to how abstractly and generally one can pitch 

one’s computational descriptions while still succeeding at localizing function.  Consider: a 

significant trend in computational theorizing about the brain involves the search for so-called 

“canonical computations”—computations that every functional unit (described at some level of 

grain) in the brain performs.  In fact, several of the types of models discussed above are 

candidates for this kind of description.  It has been contended in different quarters that perhaps 

all brain processes perform summation and normalization (Carandini & Heeger, 2009), or 

Bayesian inference (Friston, 2010).  Functional decomposition, however, seeks to differentiate 

neural areas in terms of distinct descriptions of their functions.  If, hypothetically, it turns out to 

be the case that all neural computations are best seen as implementing summation and 

normalization computations, then summation and normalization descriptions, as such, will fail to 

describe what (for instance) MT does, uniquely.6 

 

This is only to say that highly general computational models on their own are unlikely to ground 

functional localization.  It is not to say that they cannot in principle be helpful in differentiating 

functions.  It might be that different areas employ canonical computations in distinct ways, or in 

distinct combinations—i.e., there might be something about how and when specifically MT 

implements (for instance) a summation/normalization computation that distinguishes MT from 

the other areas that do so.  My point in the remainder of this section is that, viewed this way, 

                                                            
6 Interestingly, Rathkopf (2013) raises this kind of consideration against abstract versions of TA, but does not 

consider the possibility that a similar concern might apply to his own version of CA.  See Chirimuuta (2014) for a 

more general discussion of canonical computations.   



even models that generalize over a wide range of cases fail to explain and predict what MT will 

do in all contexts.   

 

Let’s consider an example.  Nishimoto and Gallant (2011) sought to generalize and extend the 

account of receptive field and pattern-motion properties of MT cells originally proposed by 

Simoncelli and Heeger.  Their model similarly involved input to particular modeled MT cells 

from particular sets of V1 neurons, and also employed stages of summation and divisive 

normalization (although the details were slightly different).  They had monkeys watch movies of 

naturalistic scenes (e.g., of animals moving across a prairie), and recorded MT responses across 

the entire stimulus set.7  They thus hoped to explore MT responses to, if not the entire Fourier 

domain, at least an unbiased sample of it.  Their model was fit to MT responses over a range of 

movies, and then tested for a variety of receptive field properties.  In particular, Nishimoto and 

Gallant’s MT cells showed a physiologically realistic range of pattern motion responses, 

suggesting that a summation/normalization model can capture physiological responses in both 

constrained experimental settings and naturalistic stimuli—the authors expressly phrased the 

result as a successful generalization of the notion of summation/normalization to a wider range 

of stimuli and receptive field properties (Nishimoto & Gallant, 2011, p. 14554).   

 

This is undoubtedly an interesting result.  When seen in the light of the discussion above, 

however, it is clear that the model is not successful in explaining and predicting what MT will do 

in all contexts.  Even the “naturalistic” stimuli are two-dimensional, so the model does not say 

anything about the sorts of robust and functionally relevant responses to depth that have also 

been discovered in MT.  Not only does Nishimoto and Gallant’s model not predict any of these 

effects, but it is not intended to—it is a study of motion receptive fields and pattern selectivity 

for motion stimuli that attempts to extend models of those responses to cover naturalistic stimuli.  

Understanding MT function as a whole, however, involves not just understanding its responses 

in motion contexts, but also in depth contexts.  As such, having a successful model for even a 

relatively unconstrained set of two-dimensional, black and white motion stimuli simply doesn’t 

provide an explanation or prediction of what will happen in further contexts.8   

 

The natural response on behalf of the CA theorist is to double down on the gambit by suggesting 

that with enough study and modification of the model, depth results can be incorporated.  This, 

alas, gives the game away.  What one would have to do in order to extend Nishimoto and 

Gallant’s model to account for how MT represents depth is to pursue physiological analysis of 

the responses of MT in depth contexts, as well as the anatomical connections which underlie that 

                                                            
7 The movies were not entirely naturalistic—they were “motion-enhanced”, where the “enhancement” consisted of 

the random insertion of textured objects moving across the screen.  The enhancement constrained the movies to 

meet certain statistics for spatial frequency, which I will not discuss in detail here.  It should also be noted that the 

standards for interpreting model success for naturalistic stimuli are generally different—models for these stimuli 

generally account for less variance in responses than for more controlled stimuli.  I will gloss over this detail as well. 
8 Nor would it be helpful to model “totally naturalistic” stimuli, which contained all possible stimulus elements.  

Understanding cell responses to such stimuli would require knowing the statistics of the relevant aspects of the 

stimulus, and this is often difficult to discern in fully unconstrained settings.  Drawing conclusions in such studies 

often requires having a model already in hand of what the cell is responding to (as was, in fact, the case for 

Nishimoto and Gallant’s)—but, as already shown, a previous understanding of what  cells do can be overturned in 

new contexts.  Rust and Movshon (2005) discuss these points in an amusingly titled article, “In praise of artifice,” 

which criticizes overly optimistic use of “naturalistic” stimuli in computational neuroscience.   



influence, and then build parameters accounting for depth response into the model.  That is, in 

order for the model to be both general and predictive, we would have to explore new contexts 

with physiological methods and modify the model to suit them.  This fact is often noted by those 

who tout the potential generalizability of their models.9   

 

In my view, this shows the unification gambit, and CA more generally, to offer only a rather 

empty promise.  Recall, CA theorists take contextual variation to be inherently incompatible with 

functional localization, on largely pragmatic grounds—we cannot have good theories of 

localization, they argue, if we must continually explore distinct contexts and be willing to modify 

our functional accounts accordingly.  But armed with only highly general descriptions of an 

area’s function, this is what we will have to do in order to predict how a brain area will function 

in a given context.  Morrison (2000) has made a similar point about highly general models: if we 

must build in new parameters to account for every fresh context, then there is no deep 

explanation or unification provided by the model itself.  If this is correct, then the computational 

descriptions on offer in the unificationist gambit neither explain nor predict what brain areas do 

in all contexts.   

 

It is worth pausing to note that this conclusion is reflected in Krekelberg and Albright’s analysis 

of their competition model.  The general lesson they draw from their study is that one cannot 

predict the responses of MT cells to multiple Fourier components in a stimulus just by knowing 

their responses to the individual ones.  Fourier components need to be both measured 

individually and measured in combination.  Krekelberg and Albright point out that they studied 

only a few Fourier components out of the entire set of possibilities, and that the cells they studied 

don’t exhibit a clear pattern of inhibition and excitation in the components, instead being 

uniquely characterized.  One of the things we want to know, then, is whether there are patterns 

of inhibition and excitation to different components across populations of MT cells, and how 

these relate to motion perception.  The point is that the competition model, fit to the current data, 

does not say anything about these patterns.  They write: “Sampling only 6 of the relevant points 

in [the Fourier domain] makes finding a common pattern of competitive interactions [shared 

amongst different cells] unlikely. To uncover a common pattern, we believe it to be necessary to 

measure interactions across a large part of Fourier space” (Krekelberg & Albright, 2005, p. 

2920).10  That is, to understand what MT cells do, neuroscientists have to look for a pattern in the 

way their behavior tends to vary as the stimulus changes: they need to look at contextual 

variation.  Note that this is true despite the success of the model at fitting the data that was 

actually studied and its promise as a way of explaining reverse-phi phenomena. While the 

competition model provides a way of analyzing the responses to any particular combination of 

                                                            
9 Both Koechlin et al. (1999, p. 40) and Simoncelli and Heeger (1998, p. 756) admit that this further investigation 

and explicit addition would be necessary for generalizing their models beyond motion contexts.  Tellingly, despite 

expressly calling their model a generalization, Nishimoto and Gallant do not even mention depth in their discussion 

of motion-selectivity properties, other than to note that no disparity is present in their stimuli and therefore is absent 

from the modeled responses. 
10 Krekelberg and Albright note that there are pragmatic problems with this suggestion—namely the “combinatorial 

explosion” of needing to look at all of the Fourier components and their combination.  Inevitably, this will involve 

some exploratory investigation.  In other work (Burnston, 2015, 2016) I discuss how  contextualist function 

ascriptions can be used to constrain search through very complex sets of possible contexts, and argue that this kind 

of search  is generally systematic and intelligible despite not attempting a “complete” account of an area’s function.   



Fourier components, it does not of itself provide the explanatory principles for understanding MT 

function as a whole.  Nor is it intended to.    

 

To sum up:  CA theorists contend that context is inimical to functional localization.  The 

proposed advantage for CA is that it hopes to give accounts that explain and predict what will 

occur in all contexts.  I have argued that this is a false hope—even given a highly general model, 

we must still investigate and describe detailed contextual variations in behavior before 

understanding the function of areas like MT.  Alas, I can’t prove the negative existential: there is 

no way to show that it is impossible that we could have one model that accounts for all and only 

everything that MT does, is predictive in the way that CA theorists demand, and is so in a way 

that does not require simply adding in new parameters to the model for each modeled situation.  

However, I think the situation is tenuous enough that we should be motivated to consider 

alternatives for understanding how computational description—especially highly generalized 

models—contribute to functional decomposition.  In the final section, I sketch such a view.    

 

6.  Conclusion:  Explanatory Unification versus Tools for Contextual Analysis 

 

I have argued that CA is not substantiated by modeling projects analyzing MT.  How, then, do 

we construe the role of computational modeling in functional localization?  Denying 

computational descriptions pride-of-place in localization is not, or should not be, to decry their 

importance writ large.  I have already noted some similarities between my characterization of 

neuroscientific models and Cartwright and Morrison’s arguments about modeling in physics.  

Both carve out important places for general theoretical descriptions in giving explanations, but 

deny any explanatory primacy for those descriptions, as opposed to detailed descriptions of 

distinct contexts or phenomena.  While their projects are different in focus and emphasis, I take 

both to be committed to the following idea: the usefulness of highly generalizable quantitative 

models in the sciences is not predicated on their providing an explanation of what individual 

physical systems do.  Understanding their role requires dissociating generalization and unifying 

power from explaining what occurs in particular contexts.  While I cannot flesh out the account 

in full, I want to close by suggesting that this perspective is fruitful if applied to the role of 

computational description in localizing function.  I will unimaginatively call it the “CM account” 

of modeling projects in neuroscience. 

 

The CM account considers computational descriptions to be highly general tools that are useful 

for modeling particular instances of neural function—useful in the sense that they provide 

frameworks for generating quantitative predictions for particular situations.  Computational 

descriptions such as Bayesian inference, summation/normalization, and competition are 

descriptions that can, at least in principle, be applied to any number of instances in which a brain 

area processes information.  Unlike CA, however, the CM view argues that these general 

descriptions only ever generate predictions for specific cases when wedded to specific 

knowledge about the kinds of informational functions being performed by that area—i.e., the 

kinds of functional descriptions that are likely to vary with context.  This position gives an 

important role to computational description in generating explanations and predictions, but 

straightforwardly denies that a single functional description of a brain area can hold constant 

despite change in context.  The reason is that a given type of computation, on its own, is 

insufficient to say much of anything about what a particular brain area does.  In order to describe 



the function of a brain area, even in computational terms, we must explore, articulate, and model 

how the area processes information in distinct contexts. 

 

I think this view has all kinds of advantages, primarily stemming from its ability to explain the 

state of the field in modeling MT.  The problem for CA consists in the fact that there is a 

diversity of models accounting for different aspects of MT function, and that attempting to 

generalize beyond this removes the kind of explanatory power on which CA seeks to hang its 

hat.  On the CM account, however, we should precisely expect a range of models each serving a 

variety of functions—sometimes attempting to generalize over a range of phenomena, sometimes 

to incorporate new anatomical facts, sometimes to account for physiological functions without 

detailed anatomical knowledge, and sometimes to model very specific phenomena.  The CM 

account also incorporates perfectly a variety of features that should seem appealing in light of the 

above discussion.  It captures the importance of computational models without placing an 

explanatory burden on them that (if the arguments above are correct) they cannot fulfill.  It also 

captures neuroscientists’ search for highly general models in a way that does not make them 

irrelevant to questions of localization, but also does not saddle them with the sole burden of 

making specific predictions in every case.  It can hope to account for the range of attitudes 

modelers take to their models: sometimes touting their generalizability, sometimes their specific 

structure as used in describing a specific case, etc.  Importantly, this includes attitudes in which 

modelers take their distinct approaches to be competing.  There is certainly room in the field (as 

the CM account construes it) for debate about which particular model or set of models is best for 

saving some particular neural phenomenon.  It seems to me that all of this is exactly as it should 

be, and that nothing is left out by the CM account.     

 

Having this perspective on the table is useful, since it gives us an alternative to CA for thinking 

about other modeling projects.  There are very successful models of other parts of the brain:  for 

instance, the theory that V1 neurons incorporate a range of Gabor filters for performing local 

Fourier analysis on the information represented at the retina (Olshausen & Field, 2009).  CM 

suggests the following general set of tendencies for modeling projects.  Models that are 

constructed based on responses to particular stimuli are unlikely to generalize too far beyond 

those stimuli.  Models that are very general are unlikely to explain and predict everything a brain 

area is capable of doing without adding a lot of extra context-specific information.  In each case, 

we should expect neuroscientific progress both in seeking general models and in pursuing 

detailed, contextually-varying descriptions. 

 

Gabor models of V1 are built to capture its responses to individually presented contrast gratings.  

As Chirimuuta and Gold (2009) note, Gabor models, with their assumption of fixed linear 

receptive fields for V1 neurons, fail to account for a wide range of results suggesting that 

receptive fields are actually stimulus and network-dependent—i.e., their functional responses 

change depending on context.  While I can’t undertake detailed discussion here, Chirimuuta and 

Gold lay out the dialectic surrounding this situation, and it takes a shape that is very predictable 

from a CM point of view.  Some contend that we should abstract to a canonical computation, 

perhaps involving normalization, to account for non-classical receptive field properties, but these 

models have not succeeded at explaining a variety of effects, which might require greater 

extensions beyond the notion of a fixed receptive field.  Others propose “piecemeal” solutions, 

suggesting that models must be restricted to particular contexts.  Chirimuuta and Gold, however, 



suggest that this may miss facts about V1 neurons in general, and express hope for a unifying 

general model.  On CM, this is not a choice that must be made one way or another.  Both 

generalizing and piecemeal solutions are important, and it is unlikely that either will explain 

everything there is to know about V1’s function.    

 

Unifying perspectives are likely to be particularly valuable in cases where we know the function 

of an area to be very diverse.  This is the case in Levy et al.’s (2005) discussion of the 

hippocampus, which Rathkopf (2013) proposes as implementing a CA type account.  On Levy et 

al.’s view, the hippocampus serves as a “recoder,” which searches for associations across 

spatially and temporally extended representations in other brain areas.  While they tout the 

unifying power of their theory, they explicitly say that their view consists of a “family of 

models”—the recoding idea allows for the generation of a number of much more specific 

network models (sometimes involving different basic assumptions about the networks involved) 

engineered to account for specific behaviors.  Moreover, the networks themselves involve large 

numbers of cells that are meant to encode “local context,” and the function of these cells changes 

as tasks vary.  The model generates predictions via positing random search defined over these 

particular elements.  Thus, despite their touted unification, the authors do not seem to be positing 

a final explanation of the function of the hippocampus.  Their view of unification “[does] not 

propose that the recoding perspective is the only correct one” (2005, p. 1256).  Rather, they 

suggest that their family of models serves “as a unifying theme and as a compass to direct 

research questions” (2005, p. 1256).11 

 

Much more would need to be said to give full descriptions of these particular cases, and there are 

of course many other modeling projects in neuroscience that I’ve not discussed.  But combined 

with the discussion of MT, I think the foregoing helps to show that CM offers a cogent, 

productive view of computational neuroscience, which is more descriptively adequate than CA.  

The burden, at this point, should fall heavily on the CA theorist to give us a reason to adopt the 

weighty responsibility given to computational descriptions on the CA view, rather than the more 

modest tenets of the CM one.  Thus, while the CM perspective I have advanced makes ample 

room for computational modeling in explanation, it is not meant to be particularly conciliatory 

towards CA.  I contend that absolutism, in any form, is false.  CA theorists will be left unhappy 

here, because I have not said anything to dissuade them from their absolutist fears of contextual 

variation.  Elsewhere, however, I argue that these fears are unfounded.  One can have a 

contextualist theory of localization that succeeds in meeting the aims of functional 

decomposition in the brain.  For now, I merely hope to have pushed the question towards that 

larger platform.   
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